Insights from a Spatially and Temporally Resolved Nanoparticle Fate Model

o----- Greg Lowry Elizabeth Casman

CO-AUTHORS

Amy Dale-PhD Student

Liz Casman-Professor Engineering and Public Policy

To assess the environmental risk of engineered NPs, we need <u>models</u> that capture NP transport and transformations in soil, water, & sediment

But what environmental processes and model features are essential?

1. Sediments determine NP transport & hydrology determines sediment transport

2. Transformations affect fate

Model the fate of NPs and their transformation by-products in a freshwater watershed at high spatial and temporal resolution

Investigate the effect of common simplifying assumptions on NP fate model predictions

Model Framework

Key Model Features	Key Simplifying Assumptions
 Hydrologic simulation: WWTP locations & discharges Stream velocity, volume, & depth Daily time step 	 All NPs are bound to larger particles In the river, NPs transport with silts/fines*
 Agricultural simulation: historical land use, meteorology, and biosolids application data models crop runoff to river 	ZnO and Ag NP speciation in effluent and biosolids were assumed or modeled*
Dynamic sediment transport as a function of stream flow	Moderate spatial resolution: 30 km average stream segment length
Two sediment layers, oxic (surface) and anoxic (deep)	Constant loading scenario (Gottschalk et al., 2009)
Daily variation in temperature and oxygen	No spatial variation in temperature, oxygen
Temperature, oxygen, and sulfide- dependent transformations of NPs and their transformation by-products	Size-independent particle dissolution*

*model found to be insensitive to these assumptions

RESULTS

• Metals accumulate in sediments

• ZnO NPs dissolve, sulfidized Ag NPs persist

Background Methods Results Conclusion

- Runoff is roughly a quarter of total stream loads
- Metal mobility is surprisingly high (<6% accumulation)
- NP-derived Zn is twice as mobile as Ag

Setting deposition and resuspension rates to commonly used **Constant** values dramatically **overpredicted** accumulation

Conclusion

10

• Spatial variation is very high! (hot spots!)

• PECs never exceed EPA regulatory thresholds for total metals

LOAD IMPERFECTLY PREDICTS CONCENTRATION

The highest PECs occur in segments with high loads & high sediment deposition

DILUTION DURING HIGH FLOWS DOES NOT ALONE PREDICT CONCENTRATIONS

CONCLUSIONS

Hydrology, sediment transport dynamics, chemical transformations, and spatial variation in loads strongly impact Ag and ZnO NP fate in a watershed.

Spatial variability appears more significant than temporal variability

Models that exclude these features may be limited in their ability to characterize environmental risks from these emerging chemical pollutants.

Common assumptions bias risk predictions for many NP fate models!

Assumption	Effect(s)
Spatially- and temporally invariant sediment transport	 Overpredicts accumulation in sediments
	 Mis-identifies "hot spots"
Ignoring chemical transformations (Ag and ZnO NPs)	 Predicts PECs for irrelevant species
	 Underpredicts NP mobility for soluble species
Regional & national spatial averaging	 Cannot identify regions of high local accumulation or their PECs
Long simulation time steps (monthly, yearly) or steady state	 Overpredicts accumulation in sediments by reducing variability in flow and sediment transport
	 Cannot capture acute peaks in PECs
No agricultural runoff (or spatially & temporal unresolved runoff models)	 Underpredicts PECs by underpredicting loads
	 Acute peaks in PECs during rainfall events will not be observed
Background Methods	Results Conclusion
OO	—— o ————(15)

ACKNOWLEDGEMENTS

Model development

CBP Modeling Team & Scenario Builder Team Tim Wool (WASP development team)

Funding

2014 EPA STAR Fellowship 2013 DOWD-ICES Fellowship 2011 NSF NEEP IGERT Fellowship 2011 ARCS Scholarship 2012 Anchor QEA Scholarship

Transatlantic Initiative for Nanotechnology and the Environment (TINE) Center for Environmental Implications of Nanotechnology (CEINT)

