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To assess the environmental risk

of engineered NPs, we need models that

capture NP fransport and transformations
In soil, water, & sediment

u But what environmental

U@ processes and model
features are essentiale




1. Sediments determine NP tfransport
& hydrology determines sediment transport




2. Transformations affect fate

Loyie

/ /Za/‘lf/'a/e
effw t7 7

02
l —
S
' S diccalva 0, non-towre,
. . “solid phase + (¢ lave not f/&’dé‘d/%//é
//ﬂdﬂ'd//d//a partitioning” . S

Methods Results Conclusion
O O O 07
& O O 4



OBJECTIVES

Model the fate of NPs and their
transformartion by-products in @
freshwater watershed at high

spatial and temporal resolution

Investigate the effect of common
simplifying assumptions on NP fate
model predictions



MODEL FRAMEWORK

WASP7:
WSM: .
Chesapeake Ba Water Quality
y .
— Analysis
Watershed Model Analys
Simulation
(HSPF)
Program
*Meteorology * River simulation

eLand simulation (crop runoff)
*Stream hydrology
* Point sources (WWTP effluent)




Key Model Features

Key Simplifying Assumptions

Hydrologic simulation:

* WWTP locations & discharges

 Stream velocity, volume, & depth

* Daily time step

Agricultural simulation:

* historical land use, meteorology,
and biosolids application data

* models crop runoff to river

Dynamic sediment transport as a
function of stream flow

Two sediment layers, oxic (surface)
and anoxic (deep)

Daily variation in temperature and
oxygen

Temperature, oxygen, and sulfide-
dependent transformations of NPs
and their transformation by-products

* All NPs are bound to larger particles
* In the river, NPs transport with silts/fines*

ZnO and Ag NP speciation in effluent and
biosolids were assumed or modeled*

Moderate spatial resolution:
30 km average stream segment length

Constant loading scenario
(Gottschalk et al., 2009)

No spatial variation in temperature, oxygen

Size-independent particle dissolution*

*model found to be insensitive to these assumptions



RESULTS
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values dramatically

overpredicted
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@® Spatial variation is very high! (hot spots!)
@® PECs never exceed EPA regulatory thresholds for total metals
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L OAD IMPERFECTLY PREDICTS
CONCENTRATION
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DILUTION DURING HIGH FLOWS
DOES NOT ALONE PREDICT
CONCENTRATIONS
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CONCLUSIONS
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Hydrology, sediment transport dynamics, chemical
transformations, and spatial variation in loads
strongly impact Ag and ZnO NP fate in a watershed.

Spatial variability appears more significant than
temporal variability

Models that exclude these features may be limited
in their ability to characterize environmental risks
from these emerging chemical pollutants.
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Common assumptions bias risk predictions for many NP fate models!

Assumption Effect(s)

Spatially- and temporally invariant * Overpredicts accumulation in sediments
sediment transport * Mis-identifies “hot spots”

lgnoring chemical transformations * Predicts PECs for irrelevant species

(Ag and ZnO NPs)  Underpredicts NP mobility for soluble species

* Cannot identify regions of high local

Regional & national spatial averagin i .
& P sing accumulation or their PECs

* Overpredicts accumulation in sediments by

Long simulation time steps (monthly, reducing variability in flow and sediment
yearly) or steady state transport

* Cannot capture acute peaks in PECs

_ - * Underpredicts PECs by underpredicting loads
No agricultural runoff (or spatially &

temporal unresolved runoff models) e Acute peaks in PECs during rainfall events will

not be observed
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